Question Number	Answer		Additional Guidance	Mark
1(a)	mutation chat bases / eq ;	nges the sequence of	CCEPT correct sequence of bases not there	
	{insertion / d	stop code / idea of leletion / eq} changes rame shift / eq ;	IGNORE changes one triplet / codon ACCEPT no start codon, no ribosome binding site	
	not occur / m	n / translation} does nRNA too short / nort / a different de / eq ;	3. IGNOR change of an amino acid ACCEPT wrong protein made, different sequence of amino acids	(2)

Question Number	Answer	Additional Guidance	Mark
1 (b)	in the (cell surface) membrane ;	ACCEPT in phospholipid bilayer, apical membrane NOT on, attached, basal membrane	
	2. of mucus-producing cells / eq ;	ACCEPT { epithelial/endothelial / lining} cells of appropriate named organ or system e.g. cells lining respiratory, digestive, reproductive	(2)

Question Number	Answer	Additional Guidance	Mark
1(c)	 (change in) {number / type / sequence / eq} of {amino acids / R groups}; So the {bonding / named bond } will be different / eq; 	CCEPT hydrogen, disulfide bridges, van der Waal forces, ionic NOT peptide, glycosidic, ester bond, etc IGNORE references to shape including active sites	(2)

Question Number	Answer	Additional Guidance	Mark
		NOT chlorine penalise once	
1 (d)	1. CFTR is a channel protein / eq;	1. NOT carri	
	 idea that {fewer / no} chloride ions will be able to {enter / bind to / pass through / eq} the CFTR protein; 	ACCEPT CFTR has a specific shape for chloride ions ACCEPT other ions can pass through	
	3. idea that fewer chloride ions will leave the cell;		(2

Question Number	Answer	Additional Guidance	Mark
1(e)	 less {chloride ions / water} in mucus / eq; idea that mucus is different e.g. thicker, stickier; in the {respiratory system / lungs / digestive system / pancreas / reproductive system / oviducts / fallopian tubes / cervix / sperm duct / vas deferens / eq }; credit correct reference to a consequence of thicker mucus; 		
Question		E.g. less ventilation, enzyme release, absorption of nutrients, more chest infections, reduced fertility, etc	(2)
Number	Answer	Additional Guidance	Mark
1 (f)	 by {enzymes / proteases}; by hydrolysis / eq; 		
	3. of peptide bonds;		(2)

Question Number	Answer	Additional Guidance	Mark
2 (a) (i)	B;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (a) (ii)	B;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (a) (iii)	c;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (b) (i)	C;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (b) (ii)	D;		(1) comp
Question Number	Answer	Additional Guidance	Mark
2 (c)	nucleus ;	ACCEPT chloroplast, mitochondria	(1) clerical

Question Number	Answer	Additional Guidance	Mark	
2 (d) (i)	Advantage any one from: 1. prevent child dying late in pregnancy / eq			
	2. idea of less stress for parents / eq			
	parents can prepare for child { with / without } achondroplasia / eq			
	4. idea of making an informed choice;	4. CCEPT may choose termination		
	Disadvantage any one from: 5. risk of miscarriage of healthy child / eq	5. CCEPT risk of spontaneous abortion		
	6. idea of more stress for parents / eq			
	7. cost / eq			
	8. risk of false { negatives / positives } / eq;		(2)	5

Question Number	Answer	Additional Guidance	Mark	
2 (d) (ii)	1. genoty of parents shown;			
	2. alleles in the gametes shown;			
	3. possible genotype of children shown AND corresponding phenotypes shown;			
	4. (probabilit =) 1/4 / 25% / 1 in 4 / 0.25;	4. NOT a ratio e.g. 1:4 ACCEPT 1/3, 33(.3)% , 1 in 3, 0.3 this assumes AA dies		
			(4)	р

Question Number	Answer	Additional Guidance	Mark
3(a)		Accept reasonable phonetic spellings Not:	
	A = adenine C = cytosine G = guanine T = thymine;	adenosine cysteine glycine thiamine, thyosine, tyrosine	(1)

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	{nucleotides / bases};	Accept in context of RNA	
	 credit quoted example / idea that 12 {nucleotides / bases} code for 4 amino acids; 	AAT / AAC = leucine, CAG = valine, TTT = lysine	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	 idea that each {triplet is discrete / each base is only used once in a triplet / eq }; idea that AAT + AAC + CAG + TTT gives 4 (distinct) {triplets / codes}; 	Accept a specific example eg the first T can only be used in code for first leucine Accept a description of how the code could be read if overlapping	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(iii)	 idea that more than one code can be used for a {particular amino acid/ stop code}; 	Accept more codes than are needed to code for all the amino acids (and stop code)	
	2. AAT and AAC code for leucine;		(2)

Question Number	Answer	Additional Guidance	Mark
3 (c)	В;		(1)

Question Number	Answer	Additional Guidance	Mark
3*(d)	QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC emphasis is logical sequence NB The mps do not have to be given in this order necessarily	
	reference to mRNA with sequence UUA UUG GUC AAA;		
	2. idea that ribosome is involved;		
	idea that each tRNA molecules is attached to one (specific) amino acid;	Not tRNA carries amino acids	
	credit example of tRNA anticodon with specific amino acid	AAU /AAC = leucine, CAG = valine, UUU = lysine	
	reference to anticodons on tRNA {bind / link to / line up against / eq} codons on mRNA;	Ignore complementary	
	6. credit a specific example (from this DNA);	eg UUA codon and AAU anticodon	
	idea of hydrogen bonds between bases (of tRNA and mRNA);	Accept between codon and anticodon	
	8. reference to formation of peptide {bonds / links} between (adjacent) amino acids ;		(5)

Question Number	Answer	Additional Guidance	Mark
4(a)(i)			
	{Met Gly IIe} / {methionine glycine isoleucine};	Not other abbreviations	(1)

Question Number	Answer	Additional Guidance	Mark
4(a)(ii)	idea that each {triplet is discrete / base is only used once in a triplet / eq};	Accept a description of how the code could be read if overlapping	(1)

Question Number	Answer	Additional Guidance	Mark
4(b)(i)	idea that each amino acid needs a code;	Accept codons	
	idea that {using three bases give enough codes / using less bases does not give enough codes};		
	 idea of three bases means there can be 64 {triplets / codes / combinations / eq}; 		(2)

Question Number	Answer	Additional Guidance	Mark
4(b)(ii)	idea that {effects of mutations are reduced / the amino acid may not be altered};	Accept description of effect Accept from a description of a specific example Accept always results in same amino	
	reference to the third base (being the one that can be changed with no effect);	Not similar amino acid Not similar amino acid Not similar amino acid Not similar amino acid a NB If mp 2 is awarded it will usually incorporate mp 1 as well = 2 marks	
	3. no effect on (resulting) {polypeptide / protein} / eq;		(2)
Question Number	Answer	Additional Guidance	Mark
4(c)	reference to (TAA, TAG and TGA as) stop codons;	1. No codes, triplets	
	occur at the end of the gene (on the DNA) / eq;		
	3. reference to transcribed as mRNA / eq;		
	4. as AUU, AUC and ACU;		
	5. idea that they are recognised by ribosome;	6. Accep stops the synthesis of the	
	idea that they signal the end of the polypeptide (chain);	polypeptide / the polypeptide is finished	
	7. reference to (during) translation;		(4)

Question Number	Answer	Additional Guidance	Mark
4 (d)		Accept mp 1 and 2 from correctly drawn and labelled diagram	
	1. ref to peptide {bond / link};		
	2. between (amino group / NH ₃ / NH ₄ ⁺) and {carboxyl group / COOH / COO ⁻ };	2. N formulae must be correct if only these are given	
	3. ref to condensation (reaction);		
	4. idea of role of {tRNA / ribosome / enzymes / correctly named enzyme} in joining	4. Accep e.g. hold the amino acids next to each	
	amino acids together;	other, ribosome contains enzyme	(3)